
-. . a

Solving Large Sparse Eigenvalue
Problems on Supercomputers

Bernard Philippe
Youcef Saad

December, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.38

NASA Cooperative Agreement Number NCC 2-387

{NBSA-CR-185421) S O L V I N G L A R G E SPAESE N89 -26 4 2 3
EIG E N V ALUE PBOBLE PlS 0 N SO PE IiCOM PUT ERS
(Research Inst, f o r A dvauced Computer

S c i e n c e) 2 1 p CSCL 09B U n c l a s
G 3 / 6 1 0217926

Research Institute for Advanced Computer Science

Solving Large Sparse Eigenvalue
Problems on Supercomputers

Bernard Philippe*
Youcef Saad

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.38
December, 1988

An important problem in scientific computing consists in finding a few eigenvalues and
corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve
these problems are based on projection techniques on appropriate subspaces. The main attraction
of these methods is that they only require to use the mauix in the form of matrix by vector
multiplications. We compare the implementations on supercomputers of two such methods for
symmetric matrices, namely Lanczos' method and Davidson's method. Since one of the most
important operations in these two methods is the multiplication of vectors by the sparse matrix, we
fist discuss how to perform this operation efficiently. We then compare the advantages and the
disadvantages of each method and discuss implementations aspects. Numerical experiments on a
one processor CRAY 2 and CRAY X-MP are reported. We also discuss possible parallel
implementations.

This paper is to appear in the Proceedings of the International Workshop on Parallel Algorithms
and Architectures, October, 1988, Bonas, France.

*Bernard Philippe is located at the IRISNINRIA in Rennes, France.

Work reported herein was supported by the National Science Foundation under Grants No. US
NSF-MIP-8410110 and US NSF DCR85-09970, the US Department of Energy under Grant No.
DOE DE-FG02-85ER25001, the ARO contract DAAL03-88-'K-0085, and by Cooperative
Agreement NCC 2-387 between the National Aeronautics and Space Adminis'tmtion (NASA) and
the Universities Space Research Association (USRA).

1 Introduction
The numerical solution of large sparse eigenvalue problems arises in numerous important
scientific applications that can be termed supercomputing applications. The advances in
supercomputing technology allow today to tackle very large eigenvalue problems that were
not feasible a few years ago. Moreover, this trend is likely to continue as the scientific models
will become more sophisticated and as the numerical methods will improve in efficiency and
reliability. This paper considers the problems encountered when adapting two well-known
numerical techniques for solving eigenvalue problems, to supercomputing environments. The
two methods considered are the Lanczos algorithm and Davidson's method. The first is a
well-known technique which has had impressive success in the last two decades, for solving
standard symmetric eigenvalue problems. It main attraction is that it can build, at least in
theory, an orthogonal basis of the so-called Krylov subspace IC, = span{v, Av, ..., A""v}
with the help of a simple three-term recurrence. To extract the Ritz eigenvalues from this
subspace, one only needs to compute eigenvalues of a tridiagonal matrix whose coefficients
are obtained from the three-term recurrence. In Davidson's met hod one constructs explicitly
an orthogonal basis of a certain d x p a c e which is obtained by adding a vector of the form
(M - 61)"(A - 61)v where M is a preconditioner of A, 8 is a shift close to the eigenvalue
being computed and v is the previous basis vector. This can be viewed as a preconditioned
version of the Lanczos algorithm. The advantage is faster convergence, i.e., the subspace
for which convergence is achieved in Davidson's method is of much smaller dimension than
with Lanczos. On the other hand each iteration now costs much more since the three
term recurrence is lost and one must explicitly orthogonalize each new vector against all
previous ones. However, for many problems arising in spwiCc applications such as chemistry,
Davidson's method is still superior.

Though very similar in theory, the two methods are different from the computational
point of view and the problem encountered when implementing them on supercomputers
are not the same. Their only common point is that they both use at each step a matrix
by vector multiplication. There are issues, such as reorthogonalization for the Lanczos
algorithm, that are proper to one of the methods only.

In the next section we describe the two methods and compare their advantages and
disadvantages. Then we will discuss the problem of performing a matrix by vector product
on supercomputers. In Section 4, we will describe implementation details and numerical
experiments for the CRAY 2 and for the CRAY X-MP. Finally in Section 5 , we will give
some ideas on how to adapt the two methods on a parallel machine with a moderate number
of processors.

2 The Lanczos and Davidson methods

2.1 The Lanczos Algorithm .
The Lanczos algorithm in its basic form, is an algorithm for computing an orthogonal basis
of a Krylov subspace, i.e., a subspace of the form Km = span(v1, A s , . . . , Am-%}. The

2

c

algorithm is as follows.

Start: Choose an initial vector VI.

Iterate: for j = 1,2, ..,m, .. Do
0 y:= Avj

If j > 1 compute y := y - Pjvj-1

0 "j := (Y , V j)

0 pj+1 := llYll2

vj+1 := y/Pj+l

0 y := y - crjvj

The main iteration in the above algorithm can be succinctly described by the following
three term recurrence:

P j + l V j + l = Avj - a j v j - Pjvj-1 (1)
where crj and are selected so that the vector vj+l is orthogonal to both vj and Vj-1.

It can be shown that this ensures that the sequence of vectors vi forms an orthonormal
sequence.

If we denote by Vm the N x m matrix

and by Tm the tridiagonal matrix:

Tm =

then we have the relations,

and

Therefore, it is natural to approximate the eigenvalues of A by some of the eigenvalues of Tm.
This will constitute a Rayleigh-Ritz [21] procedure on the Krylov subspace Km. It is known
[21] that the outmost eigenvalues of Tm, will rapidly become good approximations to those
of A. In this paper we will assume that we are interested in the smallest eigenvalues so we
number all eigenvalues, exact and approximate, increasingly and denote by Aim) the i - th
eigenvalue of Tm, and yjm) the corresponding eigenvector. The corresponding approximate
eigenvector of A is given by uim) = Vmyi

V,TAVm = Tm

.

(4 .

3

Although the above procedure seems very simple to implement there are several pitfalls.
One of the first observations made on the Lanczos algorithm is the loss of orthogonality
of the vectors vi. We can only summarize the main findings concerning the analysis on
loss of orthogonality but we refer the readers to [21] for details. Loss of orthogonality is
triggered by convergence of some eigenvector and is avoidable only at the price of some form
of reort hogonalization. The simplest reorthogonalization possible is full reorthogonalization:
at every step one reorthogonalizes the current Lanczos vector against all previous ones.
However, it was discovered that loss of orthogonality does not prevent convergence, it can at
worst slow it down [19]. As a result several authors suggested using the algorithm without
reorthogonalization. The implementation of the algorithm without reorthogonalization is
complicated by several factors. First, the approximate eigenvalues may now appear several
times. Moreover, one must be careful about monitoring convergence of eigenvalues: some
eigenvalues will seem to converge and then disappear for a while only to reappear later. This
does not happen with full reorthogonalization. The advantages of the algorithm without
reorthogonalization are clear, the avoidance of storing all the Lanczos vectors being perhaps
the most important one. iFrom the point of view of c a t , orthogonalization by Gram Schmidt
is rather expensive.

.

For additional details on the Lancms method, see [4,13,23,25,26].

2.2 The Davidson Algorithm
Similarly to the Lanczos algorithm, the Davidson algorithm [6] is based on the projection of
the matrix over a sequence of subspaces of increasing dimension. In some sense, the method
can be considered as a preconditioned version of the Lanczos method [17] although the
context is rather different from that of preconditioned techniques for solving linear systems.
If the preconditioner is efficient, the convergence can be very fast. The major drawback
of the method comes from the amount of work involved in one iteration, which increases
with the dimension of the subspace : in contrast with the Lanczos algorithm, the restricted
matrices are full and they must explicitly be computed; moreover, it is now necessary to
store the orthonormal basis and its resulting transformation by the original matrix. Hence,
the process must be restarted periodically with the current best estimate of the wanted
eigenvector. The algorithm is built around two embedded loops. To compute the largest
(resp. smalleat) eigenvalue of A, the process can be described as follows.

4

Start: Choose an initial unit vector wl.

Iterate: for iter = 1,2, ... Do

Iterate: for j = 1, ..., k Do
0 Wj := AV, (only the last column is computed)

Hj := 5'Wj (only the last column is computed)
0 computation of the largest eigenpair of H , : (A, y)

0 s := Vjy (Ritz-vector)
r := Wjy - AS (residual)

0 test for convergence
0 I f j < k :

t := (M - XI)-Ir (M is the preconditioner)
:= MGS([&, t]) (Modified-Gram-Schmidt proce-

dure)

y := z

The simplest and most common preconditioner M is the main diagonal of A (Jacobi
Preconditioner). It can only be used when the matrix A is nearly diagonal in the sense that
its matrix of eigenvectors is close to the identity ; this is often the situation in Quantum
Chemistry and this is the reason for the method is popular there.

It should be noticed that, if no preconditioner were to be used (ie. M = Id), then the
sequence of subspaces would become identical with that of the Krylov subspaces and then
both methods, Lanczos and Davidson, would theoretically be equivalent. However, since the
considered orthonormal basis is not the same, the computation will remain heavier with the
Davidson method.

When one seeks several eigenvalues or when one knows that the desired eigenvalue is very
close from some others, a block version of the algorithm can be used : several eigenpairs of
Hj are computed at the same time and then several vectors are added to the basis 5.

2.3 Complexity of the Algorithms
We now consider the complexity of one outer iteration of the Davidson algorithm when only
one vector is added at every inner step to the basis. The cost of each such outer loop is
roughly,

5

where n, n, and pr stand respectively for the order of the matrix A, its number of non-zero
entries and the complexity of the preconditioning step. When the Jacobi preconditioner is
used p , = n and the average cost for the inner iteration is then

This shows that the cost per step increases quadratically with the step number k, and a
reasonable upper limit for IC would be k = fi in which case the average cost .per inner-step
comes to

This number has to be compared to (n , + 5n) which is the complexity for each Lanczos
step, without reorthogonalization. It becomes clear that, in order to be competitive, the
method needs a preconditioner which will strongly reduces the number of steps to achieve
convergence.

For the block version of the Davidson algorithm, the complexity per outer step remains
roughly unchanged, but of course the number of necessary steps for convergence increases
with the number of eigenpairs sought.

Cinn e nz + P, + 7/2n3” + O(n).

3 The problem of matrix by vector multiplications
Since both methods use a matrix by vector multiplication at each step the procedure to
perform this o p e r a h must be carefully implemented. The typical matrices dealt with-are
sparse and often unstructured and as a result very poor performance may prevail if not
enough care is devoted to optimizing this operation. We review here some of the possible
options we have to improve the speed of this basic kernel by exploiting vectorization and
parallelization.

To parallelize the multiplication, it is easy to consider A as a sum of some elementary
matrices A = C y r At , to compute in parallel (yt := At~)t=l,nproc and then accumulate the
partial results y := yt. Because the vector z must be read by all the processors, it
should remain in the global memory or be duplicated in the local memories. The usual way
to perform the partitioning is to define blocks of consecutive rows of A in order to bypass
the accumulation step. A special case consists of considering one row only per block and
performing all the scalar products in parallel. Workload would obviously be balanced when
the number of non-zero entries per processor is roughly the same.

It may be pointed out that in the block version of the Davidson method parallelism can
also be achieyd by performing independently several multiplications. We will not discuss
this obvious additional possibility which can also be exploited in the block form of the
Lanczos algorithm.

We now would like to examine in detail the procedure on one processor which is assumed
to be a vector processor. The first observation that has been made in this context is that
this operation can be performed by diagonals when the matrix is regularly structured, i.e.,
when it consists of a few diagonals [12] . The matrix can be stored in a rectangular array
DIAG(1 : N , 1 : N D I A G) and the offsets of these diagonals from the main diagonal may

nproc

6

be stored in a small integer array IOFF(1 : NDIAG). After initializing the vector y
to zero, the main loop for computing y = Az is expressed in FORTRAN 8-X as follows.

DO 10 J=l, NDIAG
JOFF = IOFF(J)
Y(1:N) = Y(I:N) + DIAG(I:N,J)*X(JOFF+l:JOFF+N)

10 CONTINUE

Excellent megaflops rates can be reached on vector machines when the matrix is large enough.
For general sparse matrices there has been several attempts to obtain similar perfor-

mances by either generalizing the diagonal storage scheme [18,27] or by reordering the ma-
trix so as to obtain a diagonal structure [1,22]. We will only discuss the first approach
here. This approach is of interest only for matrices whose maximum number of nonzeros
per row jmax (which is called the degree of the row) is small. One then stores the en-
tries of the matrix in a real array COEFF(1 : n, 1 : jmaz) together with an integer array
JCOEFF(1 : n, 1 : j m a t) that stores the column numbers of each entry of COEFF. We
refer to this as the ITPACK format. The above FORTRAN loop then becomes,

DO 10 J=l, NDIAG
Y (1 :N) = Y (1 :N) + COEFF(1: Ne J)*X(JCOEFF (1 : N, J))

10 CONTINUE

The main difference between this loop and the previous one is the presence of indirect
addressing in the innermost computation. Note that if the degree of the rows varies substan-
tially, then many zero elements must be stored unnecessarily, and this scheme may become
inefficient.

The above storage schemes are somewhat specialized to certain types of matrices. These
can be very useful in many instances but their lack of generality is a serious limitation.
Unfortunately, as is often the case, there is a conflict between generality and efficiency.

On of the most general schemes for storing sparse matrices uses a real array A(1 : N N Z)
which contains the nonzero elements of the matrix, stored row-wise, an integer array JA(1 :
N N Z) which stores the column positions of the corresponding elements in the real array
A, and finally a pointer integer array IA(1 : N + 1) the i-th element of which points to
the beginning in the arrays A and J A of the consecutive rows. This data structure is often
referred to as the general sparse format, or the A, J A , I A format. With this storage scheme
each component of the resulting vector y can be easily computed independently as the dot
product of the i-th row of the matrix with the vector z. We can write this as

DO 10 Ill, N
Kl = IA(1)
K2 = IA(I+l)-1
Y(1) = DOTPRODUCT(A(Kl:K2) , X(JA(K1:KZ))

10 CONTINUE

The outer loop can be performed in parallel; as mentioned before. On a machine like the

7

matrix order
non-zero entries I 16238 I40606 I 128773 1 I I I 2765 3096 14917

L

maximum degree 9 38 17
minimum degree 3 6 1
average degree 6 13 9

Table 1: Characteristics of three sparse matrices.

Alliant FX-8, the synchronization of this outer loop is inexpensive and the performance of
the above program can be excellent.

The indirect addressing involved in the second vector in the dot product loop is handled
by a special hardware instruction called a Gather operation. The vector X(JA(k1 : k2)) is
first gathered from memory into a vector of contiguous elements. The dot product is then
carried out as regular dot product operation. The first vector machines that appeared did
not perform too well on sparse computations because they were not equipped with special
instructions for Gather and Scatter. The beneficial impact of Hardwaxe Scatter and Gather
on vector machines has been discussed in [14].

For vector machines the previous two techniques are likely to perform very poorly because
they involve vectors that are usually very short. For instance on CRAY-2, the sparse dot-
product reaches half of the asymptotic speed with vectors of length 150 while the average
degree per row of sparse matrices usually lies in the range 5-50. An alternative is to use one
of the schemes based on diagonal and generalized banded format described above. However,
the following scheme is more general.

We start from the A, J A , I A data structure and build a new one by constructing what
we call jagged diagonals [24]. This scheme is related to the stripe structure [16] or to the
generalized-column wise storage [8]. We store as a dense vector the leftmost element from
each row, together with two integer vectors containing the row and column positions of each
element. This is followed by the second jagged diagonal consisting of the elements in second
position from the left. This storage may also be done starting from the main diagonal,
especially when storing only the upper-triangular part of the symmetric matrix. As we
build more and more jagged diagonals, their length decreases. The number of j-diagonals is
equal to the largest degree of the rows. As an illustration, three sparse matrices have been
considered for the efficiency of this storage : two matrices arising from the triangularization
of 2-D and 3-D domains and a stochastic transition probability matrix of a Markov chain;
their characteristics are described in Table 1 and the lengths of their jagged diagonals are
pictured in Figure 1. These examples show that, with this storage, most of the non-zero
entries belong to long vectors.

If IDIAG(j) is the pointer to the beginning of the j-th jagged diagonal and IROW(k) and
JDIAG(k) are, respectively, the row position and the column position of the element stored
in A(k), then the product y = Az, can be computed as follows,

8

I6384

409C

1024

2 5 6

6 4

1 6

4

1

I

II 3 - D i
Markov

Figure 1: Lengths of jagged diagonals for three test matrices.

DO 10 J = 1, NDIAC
K1 = IDIAC(J)
K2 = IDIAG(J+l)-l
Y (IROW(K1 :K2)) = Y (IROW(K1: K2) 1 + A(K1 :K2)*X(JDIAG(Kl :K2))

10 CONTINUE

The asymptotic speed which can be obtained on CRAY 2 is 29 MFLOPS. To increase
speed, one may proceed in two ways. A first way consists of reordering the rows by decreasing
degree in order to be able to pick the non-zero entries of each jagged diagonal of A from
consecutive rows; this allows us to avoid the indirect load and store on Y. On CRAY 2, the
asymptotic speed is then 39 MFLOPS. The second way to increase speed is to unroll the
loop by blocking several j-diagonals together. Let us assume, that now the sparse matrix is
stored in a two-dimensional array A such that A(*,k) represents all the entries of the k-th
jagged diagonals of all the blocks ; NS is the number of diagonals in a block ; IROW(k) and
JDIAG(k,j) are the row and column indices of the entry stored in A(kj). This definition
implies that all the diagonals of a block have the same structure ; it can be achieved by
adding some virtual non-zero entries. Let NB be the number of blocks and IDIAG(j) the
pointer to the j-th block. The program becomes

9

Table 2: Megaflop rates for five matrix by vector multiplication kernels on an Alliant FX-80
(double precision arithmetic) .

DO 10 J = l , NB
K l = I D I A C (J)
K 2 = I D I A C (J + l) - l
Y (I R O W (K 1 : K2) = Y (I R O W (K 1 : K 2)

+ A (K 1 : K 2 , 1) *X (J D I A C (K 1 : K 2 , l)
+ A (K 1 : K2 , 2) *X (JDIAG (Kl : K2 , 2)

+ A (K 1 : K 2 ,NS) * X (J D I A C (K l : K2 ,NS)

*
* + ...
*

10 CONTINUE

The parameter NS is called depth of unrolling. The improvement achieved here is due to
the fact that there is only one indirect load and store of the vector Y for NS indirect loads
of the vector X. On CRAY 2, the asymptotic speed for NS = 4 is about 55 MFLOPS.

It is obviously possible to combine both improvements (reordering rows and blocking
diagonals) to reach higher rates of execution.

As an illustration we show in the next table the performance, on an Alliant FX-80, of
the following five different ways of multiplying a matrix by a vector:

1. Row-wise storage , (sparse dot product form);
2. Column wise storage, (sparse saxpy form);
3. Itpack format
4. Diagonal storage, (triad form);
5. Jagged diagonal format(with reordered rows);

The technique of unrolling has not yet been tested on Alliant. We took 5-point and 7-point
matrices for 2-D and 3-D rectangular grids. Results are displayed in Table 2. Notice the
wide differences in performance obtained between the various ways of performing the same
operation. On the Alliant FX-80, method 2, using the column-wise storage is the worst
performer. Also of interest, and to some extent disturbing, is the variation in performance
obtained for different matrices with the same kernel. These discrepancies are especially
noticeable in Kernel 5, using the Jagged diagonal format.

10

One problem that seems to have not yet been studied in the literature is that of performing
simple operations with general sparse matrices on SIMD machines of the type of the MPP
or the Connection machine. On such machines much of what has been accomplished is
to test the usual symmetric conjugate gradient method for easy model problems (3,2]. The
difficulty with the more realistic general sparse problems is the apparent necessity of resorting
to indirect addressing, a difficult operation on these architectures. Hamrnond and Law [9]
propose a hardware solution based on systolic arrays. This challenging problem is to be
solved to satisfaction before SIMD machines are to be considered real contenders to MIMD
ones, in the race for usable supercomputers.

4 Implement at ions and results on vector processors

4.1 Implementation of the Lanczos method
The questions that must be addressed when implementing a Lanczos type algorithm are
numerous:

0 Should reorthogonalization be used and which form of reorthogonalization?

0 How often should one compute the approximate eigenvalues and how does one monitor
convergence.

0 What is the best way of computing or updating the eigenvalues of T,?

We will now answer some of these questions. The trade-offs between reorthogonalizing and
not reorthogonalizing in a Lanczos code are similar to those on a scalar machine, namely cost
versus ease of implementations and simplicity. There are circumstances where reorthogonal-
ization of some sort is essential. For example if the Lanczos algorithm is used in conjunction
with shift-and-invert then the price of reorthogonalization is worth paying. The reason is
that the major cost in this case is the factorization and there will be more factorizations if
Lanczos is slower to converge as is the case when reorthogonalization is skipped. Relatively
speaking, factorizations of unstructured sparse matrices are even more expensive on vector
machines than on scalar machines so the case for even a full reorthogonalization in shift and
invert is stronger. If a large number of eigenvalues must be computed, then reorthogonal-
ization is an option that might become too expensive.
We are interested in the problem of computing a few of the largest or smallest eigenvalues

of A. We chose to implement an algorithm without reorthogonalization only because of the
interesting challenges that the implementation of this technique brings to vector and paral-
lel processing. When full reorthogonalization is used one has only to solve the problem of
implementing a good Gram-Schmidt algorithm and a good matrix by vector multiplication
routine. The question of tracking convergence and analyze T do not matter as much. The
other forms of reorthogonalization, such as Selective Orthogonalization or Partial Reorthog-
onalization [21] are in fact similar in nature to those of Lanczos without reorthogonalization
but more complex to implement.

11

Here are a few points of detail on SLAN a simple Lanczos code without reorthogonaliza-
tion, which we implemented and tested.

0 No reorthogonalization of any form is used.

0 The algorithm computes only the k leftmost or k rightmost eigenvalues of A.

0 Eigenvectors associated with these eigenvalues may be computed if desired. If so, these
are accumulated from recomputed Lanczos vectors at the end of the process.

0 The code eliminates any new eigenvalue that is very close to an already computed
eigenvalue.

0 Convergence is tracked from left to right for the smallest eigenvalues and from right to
left for the largest ones. As a result, we only extract the eigenvalues of the tridiagonal
matrix that are likely to converge next. The number of eigenvalues to extract is
estimated from the number of desired eigenvalues and the rates of convergence.

4.2

Although computing the eigenvalues of a tridiagonal matrix in the Lanczos algorithm may
seem negligible on a scalar machine, it is no longer the case in a supercomputing environment.
The standard algorithm used for computing eigenvalues of tridiagonal matrices is the QL
algorithm. In the context of the Lanczos algorithm it is more natural to use bisection type
algorithm for several reasons [20]. In order to exploit vectorization we will use a form of
multisectionning similar to that proposed by Lo and Philippe [15]. As in [15], we start by a
first phase of isolation, where we seek an interval for each eigenvalue that does not contain
any other eigenvalue. This process is sequential and consists of sweeping the data points
from left to right and to determine which of the points is the closest to a given eigenvalue
from the left and then from the right. Once a separate interval has been found for each
eigenvalue, we can proceed to the next phase which consists of a refinement phase. Let us
assume that we have a set of intervals [uj, bj] each of which contains exactly one eigenvalue
and let x j = (uj + b j) / Z be their middles. To be able to refine a given interval, we may use
the usual Sturm sequence property and compute the (divided) Sturm sequences,

Analyzing T on vector and parallel processors

Pi3
ai(zj) = CY; - xj -

ai-1 (z j)
(3)

starting from ao(zj) = 1. As is well-known, the number ~ (z j) of negative signs in the
sequence ai(zj), i = 1,2, .., m counts the number of eigenvalues of T, that are located at the
left of x j . Therefore, the left interval bound u, will be moved to the middle sj, whenever
v(xj) is less than j otherwise bj is moved to z,. Note that the operations to compute the
sequence ai(zj) is sequential with respect to the subscript i, but it vectorizes across the

After a certain number of additional bisecti0.m steps we come close enough to the solution
that we can use a modified Newton iteration. We call this the third phase of the algorithm.

points xj.

12

.

The Secant method is used instead of the traditional Newton. The iteration is applied to the
rational function a, (t) defined above which, as is well-known, is nothing but the ratio of the
characteristic polynomial of Tm over that of Tm-l. For any value t that is not an eigenvalue
of the intermediate matrices Ti, i = 1,2, ..., m - 1, the function om(t) can be evaluated with
the help of the recursion (3). If we call xj the current approximation of the eigenvalue in the
interval [aj, b j] , then we start by computing every am(xj) from the above recurrence, and
then we define the new iterate by a secant step, namely,

The algorithm for computing the eigenvalues A m i , . . . , Amz, can be sketched as follows.

Vectorioed Multisectioning Algorithm (VMSEC)
A . Start:

0 For j = ml, . . . , m2, define aj = a, bj = b, with a, b = Gershgorin lower and upper

0 Define xj = a + j (b - a)/(m2 - ml + l) ,j = ml, . . . , m2

0 Define Phase = 1.

bounds.

B. Stumn: For k = 1, ..., m Do

C. Phase 1: If Phase=l then,
1. Start x. = xmi
2. For i = ml . . . m2 Do:

Compute (Vector mode) a(zj) and Y(2j) for j = ml, . . . , m2.

0 Starting from previous x, determine the smallest xj that is larger than A;.

0 If bj > x. then b; := x.,

0 If aj <

Call this value x. and denote the old z. by x.,1.

then ui = 5.-1.

3. Test for Phase 2: If v(b;) = i and v(a;) = i- 1 for all i = m1, ..., m2 then Phase=2.
4. If Phase=l then define new set of xis by putting in each interval [aj, bj] a number

of v(bj) - v(aj) equally distributed points.
D.Phase 2: If (Phase = 2) then

1. Forj = rnl,m2 Do
If ~(;c j) >, j then bj = ~j else aj = x j

2. For j = ml, . . . , m2 DO xj = (aj + bj)/2.
3. Test for Phase 3: if b (j) - a (j) c toZ* [aj+l - bj-l],j = ml, ..., m2 Phase = 3.

E. Phase 3: If (Phase = 3) Compute new sequence zj, j = ml, . . . , m2 according to (4).
F. Convergence test: If all eigenvalues have converged then exit else goto B.

13

Table 3: Times for the different phases in Algorithm VMSEC on a Cray 2 and for the
corresponding EISPACK routines (All times in milliseconds).

Note that the only part that does not vectorize in the above algorithm is Phase 1. One
might ask what percentage of the total run time this phase will usually take. In Table 3 we
show a break-down of the total time with respect to the three phases. The matrix is the
classical Tridiug[-l,2, -11 of size n = 500. We consider four different cases for the values
of ml and m2.

As can be seen from Table 3, Phase 1 is by no means dominating even if one computes a
large number of eigenvalues. In fact the number of Phase 1 iterations required is usually less
than 3 or 4. Then the algorithm proceeds to the most time consuming part which is Phase
2. Phase 3 also takes a small number of steps, usually less than 5.

An interesting comparison to make is with standard routines from EISPACK. We com-
pared VMSEC with both Tridib and TQLl which are the two competitive routines from the
scientific library. Table 3 gives also the times for the three methods for the same matrix
and the same machine. We asked Tridib and VMSEC to compute exactly the same eigenval-
ues and gave the same initial intervals to both routines, namely the interval [0,4] given by
Gershgorin's theorem for the test matrix considered. Note that even for computing all the

this case. We should point out that if we do not need to compute the eigenvectors, as is the
case in 'Analyze T', then Cuppen's divide and conquer algorithm [5,7] is not competitive. A
remarkable observation is that when computing all the eigenvalues the two algorithms TQLl
and VMSEC are very close even for larger matrices. For computing a smaller number of
eigenvalues VMSEC is invariably superior.

Also of importance in the Lanczos algorithm is the computation of residual norms (A -
X{ ' ")~)U!~) , which as is well-known [21] can be readily obtained from the last component of

-

I eigenvalues of a large matrix VMSEC is now competitive with TQL1, the method of choice in

To compute inexpensively the last component of yim), we exploit the observation made in
[20] that this component is equal to the last term of the sequence ok(X{'")), which is available
for free from the Sturm sequence computation.

14

.

4.3 Implementation of Davidson’s method
The routine developed computes the lowest eigenvalues of a symmetric sparse matrix A and
their associated vectors. The algorithm is expressed in a block version using the Jacobi
preconditionner ; it is organized as follows

Initializations : initial guess for the first block ;

Outer loop :

Inner loop :
0 CALL MATMULT (multiplication of the last block by A) ;
0 CALL MVTW (update of the interaction matrix H) ;
0 Computation of the NB lowest eigenvalues and of their associated vectors by

0 CALL RITZ (computation of the Ritz vectors, which are candidate for a new

0 Test for convergence ;
0 Test for ending the inner loop (too many vectors in the basis) ;
0 CALL CORRECT (preconditioning every vector of the new block)
0 CALL COMPL (projection of the new block onto the orthogonal complement

of the subspace already spanned since the beginning of the outer iteration) ;
0 CALL GRAMS (Modified Gram-Schmidt orthogonalization on the new block;

only are kept the vectors having a significant contribution) ;
CALL GRAMS (On the last Ritz vectors which will be used to start a new outer

EISPACK (TRED1 - TRIDIB - TINVIT - TRBAK1) ;

block, and of their residuals) ;

iteration) ;

The following example illusrates a typical run. The test matrix has been randomly
built by defining its sparsity (R 0.01), and by chousing the diagonal entries in the range
[-a, 01 and the non-zero off-diagonal entries in the range [-p, p] , where CY = 10 and p = 1.
The sparsity pattern is unstructured. In Table 4, the relative run timea of the different
parts of the computation are reported with corresponding MFLOPS rates. Convergence was
obtained during the 4-th outer iteration. The computation involved 316 sparse matrix x
vector multiplications. The subroutine which performs these multiplications (MATMULT)
has to be provided by the user. Here only the upper-part of the matrix has been stored
row-wise and the multiplication is performed using the SPAXPY and SPDOT routines. By
considering full storage, reordering the rows in decreasing degree and by storing blocks of
two jagged diagonals, the spane multiplication reaches about 27 MFLOPS; in this situation,
the corresponding part of the computation drops to 6 % of the overall process.

When calling the routine DAVID, the user defines the block size and the maximum size
for the basis. To minimize the number of iterations, he must choose the smallest block
size, i.e. the number of sought eigenpairs. However, if he knows that there are some close

15

RITZ 130
MVTW

Remaining

L

4% 130
2 % -

Table 4: Percentages of times for the different phases in the Davidson Algorithm on a CRAY
2 (1 processor)

.
eigenvalues, he may define the block size so that the Ritz vectors corresponding to these
eigenvalues are computed. For the maximal size of the basis, the user is first limited by the
memory capacity. He has also to maintain the orthogonality of the basis ; for that purpose,
there is a control on the new vectors which are incorporated to the basis : those which
are, before projection onto the complement of the basis, almost spanned by them, are lost.
When there is some loss of orthogonality of the basis, the residuals stop to decrease and the
Ritz vectors are a worse initial guess for the next outer iteration than they were some inner
iterations before.

To conclude, we may assert that the algorithm is well suited for vector processors since the
main part of the computation is expressed by vector operations or even by matrix operations.
We have mainly tackled the important problem of sparse matrix by vector multiplication.
It remains to optimize the solution of the eigenvalue problem that is solved at every step.
In the current implementation, the routines of tridiagonalization and back transformation
(TRED1 and TRBAK1) are well vectorized. In contrast TRIDIB and TINVIT are sequential
; the first one may be replaced by the algorithm VMSEC but a vector version of TINVIT has
yet to be designed. Further improvements might then be achieved by using at one step the
previous estimates of the eigenvalues and by computing the eigenvectors by inverse iterations
from the untransformed interaction matrix.

4.4 Comparing the two methods
In this section, we discuss the domain of applicability of Davidson’s method vs. the Lanczos
algorithm. Since we restrict our study to the Jacobi preconditioner, we are interested at
the effect of diagonal dominance of the matrix on execution times. Here, the term diagonal
dominant matrix is loosely used to refer to a matrix whose diagonal entries vary substantially
relatively to the other elements of the matrix. Table 5 reports run times, on a CRAY X-MP,
for both methods when looking for the lowest five eigenvalues and corresponding eigenvectors
of a randomly generated symmetric sparse matrix. Tests with our codes have been carried out
by P. Harten [lo]. The matrix is of order 1000 and has a full diagonal whose elements are first
taken as random numbers between 0 and 1, and then multiplied by a diagonal scaling factor;

16

. 1 v I

10 6.757 1.455
20 3.969 1.547

.

L

70 2.287 2.396
80 2.168 2.75 1

diagonal factor I Davidson I Lancms n

1

90 2.196 7.804
100 1.996 6.705
110 1.993 7.099

Table 5: Davidson - Lanczos run time comparisons (seconds) on a CRAY X-MP (1 processor).

the off-diagonal elements are random numbers between -1 and +l; the positions of these
non-zero off-diagonal elements are randomly selected as to give a specified density, namely
0.01. The results clearly show that the methods have an opposite behavior with respect to
diagonal dominance. However, it may be asserted that the Lanczos algorithm has a broader
spectrum of applicability than Davidson’s method since in case of no diagonal dominance,
the second method may fail. Davidson’s method is efficient in specific applications such as
in Quantum Chemistry.

5 Towards Parallel Implementations
Parallelism can easily be exploited in almost all the steps of both methods: matrix or vector
operations are well adapted since the length of the involved vectors is large and multiplying
by the sparse matrix can be efficiently performed as already seen. Only two bottlenecks
occur, namely

1. the eigenvalue problem for the reduced matrix (interaction matrix),

2. the orthogonalization process.

The eigenvalue problem in (1) is different for the two algorithms. In the Lanczos process,
the matrix under consideration can be very large (especially if only eigenvalues are required)
but it is tridiagonal. In contrast, for Davidson’s method the interaction matrix is full and
usually of smaller order; as is usually done, it must first be put into tridiagonal form. To
parallelize the calculation of the eigenvalues, it is possible to split their range into several
pieces which are distributed among all the processors and then apply a!gorithm VMSEC
independently on them. However, if the number of sought eigenvalues is small the algorithm
in [15] which relies only on parallelism and not of vectorization, can be more effective.

17

Parallelizing the computation of the eigenvectors is theoretically much easier since the inverse
iteration can be done in parallel for every wanted vector. However, if eigenvalues are clustered
then some attention must be paid to maintaining orthogonality. This was addressed in [15].

In these algorithms orthogonalization is performed by the Modified Gram-Schmidt pro-
cess (MGS):

d o k = l , m
normalize vk
do j = k+l , m

vj := vj - Vk(V!V&)

. where the vectors to be orthogonalized are vk, k = 1, ..., m. Obviously, the inner loop can
be run in parallel. To increase the efficiency, it is possible to add synchronizing barriers in
order to insure that as soon one vector has received all the corrections from the previous
vectors, it is normalized and is then ready to correct the next vectors. On a CRAY X-MP/48
(4 processors) this modification improves the speed-up of the process from 2.2 to 3.2 [15).
Another algorithm consists of replacing in (MGS) the vectors by blocks of vectors; then the
normalization of one vector is replaced by applying (MGS) to the block. This algorithm does
not have equivalent stability properties but carefully used it can be very efficient, especially
to exploit data locality in hierarchical memory systems [ll].

The parallelization of the methods does not seem to be too difficult to carry out at least
on a moderately large number of processors. Our first tests in this direction indicate that
by using CRAY microtasking techniques fairly good speed-ups can be expected.

.

.

References
[l] L.M. Adam. Iterative algorithms for large sparse linear systems on pamllel computers.

PhD thesis, University of Virginia, Applied Mathematics, Charlottsville, VA 22904,
1982. Also available as NASA Contractor Report 166027.

[2] 0. A. Mc Bryan. The Connection Machine: PDE solution on 65,536 pmcessors. Tech-
nical Report LA-UR-86-4219, Los Alamos National Lab, Loa Alamos, New Mexico,
1986.

[3] T. F. Chan, C. C. Kuo, and C. Tong. Parallel Elliptic Preconditioners: Fourier Analysis
and Performance Evaluation. Technical Report 88-22, Computational and Applied
Mathematics, UCLA, 1988.

18

' .

.

.

[4] J. Cullum and R.A. Willoughby. Lancros and the Computation in Specified Intervals
of the Spectrum of Large, Sparse Real Symmetric Matrices, in Sparse Matrix Proc., ed.
I.S. Duff and G.W. Stewart, SIAM Publications, Philadelphia, 1979.

[5] J.J.M. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenprob-
lem. Num. Math., 36:318-40, 1981.

[6] E. R. Davidson. The iterative calculation o f a few ofthe lowest eigenvalues and corre-
J. Comput. Phys., 17:87-94, sponding eigenvectors of large real symmetric matrices.

1975.

[7] J. Dongarra, DC. Sorensen. A Fully Parallel Algorithm for the Symmetric Eigenvalue
Problem. SIAM J. Stat. Scient. Comput., 8:2, 1987.

[8] J. Erhel and B. Philippe. Multiplication of u vector by u sparse matriz on supemom-
puters. In M. Canard, editor, Proceedings of IFIP working conference on parallel
processing, Pisa Italy 1988, North Holland, 1988.

[9] S. W. Hammond and K. H. Law. Architecture and opemtion ofa Systolic Engine for Fi-
nite Element Computations. Technical Report 88-12, Rensselaer Polytechnic Institute,
Computer Science Dept., Troy, NY, 1988.

[lo] P. Harten, CRAY Numerical Software Project Report. Internal report - Kuck and
Associates, Inc.,1988.

[ll] W. Jalby, U. Meier. Optimizing Matrix Operutions on a Parallel Multiprocessor with a
memory Hierarchy. Proc. of the 1986 Int'l Conf. on Parallel Processing, St Charles, IL,
1986.

[E] T. I. Karush, N. K. Madsen, and G.H. Rodrigue. Matrix Multiplication by Diagonals
on Vector/PamZZeZ Processors. Technical Report UCUD , Lawrence Livermore National
Lab., Livermore, CA, 1975.

[13] J.G. Lewis. Algorithms for Sparse Matrix Eigenvalue Problems. Technical Report
STAN-CS-77-595, Department of Computer Science, Stanford University, Stanford,
Calif., 1977.

[14] J.G. Lewis and H.D. Simon. The impact of hardware scatter-gather on sparse gawsian
elimination. SIAM J. Stat. Scient. Comp., 9:304-311, 1988.

[15] S. S. Lo, B. Philippe, and A. Sameh. A multiprocessor algorithm for symmetric tridi-
agonal eigenvalue problem. SIAM J. Stat. Scient. Comput., 8:2, 1987.

[16] R. Melhem. Solution of Linear Systems with Striped Sparse Matrices. Technical Re-
port ICMA-86-91, Univ. of Pittsburgh, 1986.

19

[17] R. B. Morgan and D. S. Scott. Generalizations of Davidson's method for computing
SIAM J . Sci. Stat. Comput., 7:817-825, eigenvalues of sparse symmetric matrices.

1986.

[18] T. C. Oppe and D. R. Kinkaid. The performance of ITPACK on vector computers for
solving large sparse linear systems arising in sample oil reservoir simulation problems.
Communications in applied numerical methods, 2:l-7, 1986.

[19] C.C. Paige. The computation of eigenvalues and eigenvectors of very large sparse matri-
ces. PhD thesis, London University, Institute of Computer Science, London, England,
1971.

[20] B. N. Parlett and B. Nour-Omid. The use of refined error bounds when updating eigen-
values of tridiagonals. Lin. Alg. Appl., 68:179-219, 1985.

[21] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliis,
1980.

[22] E.L. Poole and J.M. Ortega. Multicolor ICCG methods for vector computers. SIAM
J. Numer. Anal., 24:1394-1418, 1987.

.)

[23] A. Ruhe. Implementation Aspects of Band Lanczos Algorithms for Computation of
Eigenvalues of Large Sparse Symmetric Matrices. Math. Comp. 33, pp. 680-87, 1979.

[24] Y. Saad and H. Wijshoff. A benchmark package for sparse matriz computations. In J .
Lenfant and D. De groot, editors, Proceedings of ICs conference 1988, St Malo, France,
pages 500-509, ACM, 1988.

[25] D.S. Scott. Analysis of the Lanczos Process. UCB-ERL Technical Report M78/40,
University of California, Berkeley, 1978, PhD Thesis.

[26] R. Underwood. An Iterative Block Lanczos Method for the Solution of Large Sparse
Symmetric Eigenproblems. Report STAN-CS-75-496, Department of Computer Science,
Stanford Univenity, Stanford, Calif., 1975.

[27] D.M. Young, T.C. Oppe, D. R. Kincaid, and L. J. Hayes. On the use of vector computers
for solving large sparse linear systems. Technical Report CNA-199, Center for Numerical
Analysis, Univ. of Texas at Austin, Austin, Texas, 1985.

.

20

